翻訳と辞書 |
Hilbert's lemma : ウィキペディア英語版 | Hilbert's lemma Hilbert's lemma was proposed at the end of the 19th century by mathematician David Hilbert. The lemma describes a property of the principal curvatures of surfaces. It may be used to prove Liebmann's theorem that a compact surface with constant Gaussian curvature must be a sphere.〔.〕 == Statement of the lemma == Given a manifold in three dimensions that is smooth and differentiable over a patch containing the point ''p'', where ''k'' and ''m'' are defined as the principal curvatures and ''K''(''x'') is the Gaussian curvature at a point ''x'', if ''k'' has a max at ''p'', ''m'' has a min at ''p'', and ''k'' is strictly greater than ''m'' at ''p'', then ''K''(''p'') is a non-positive real number.〔.〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hilbert's lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|